Injury Prevention Strategies for Shin Splints

ETHAN OSTROM
OSTRETHA@ISU.EDU
M.P.E- BIOMECHANICS, IDAHO STATE UNIVERSITY
B.S. EXERCISE BIOLOGY, UC DAVIS
Overview and Objectives

- Review shin splints and associated biomechanical risk factors

- Understand the force length relationship and how joint angles contribute to force production in muscle

- Know how to train the athlete that is prone to shin splints
What are *shin splints*?

- Shin splints
- Medial Shin Pain
- Exercise Induced Leg Pain
- Tibial Stress Syndrome
- Stress Fracture
- Compartment Syndrome
- Anterior Tibial Stress Syndrome
- Medial Tibial Stress Syndrome
Definition of MTSS

- Exercise induced pain on the posteromedial border of the distal two thirds of the tibia (Moen et al., 2012)

- Very common occurring as much as 35% in active populations (Yates & White, 2004)
The Problem

- Chronic injury
- Treatment is ineffective
- Athletes lose training and competition time
- Mental burn out
Running Mechanics
Biomechanical Risk Factors

- Low physical fitness/high BMI (Yagi et al., 2013)
- Muscle imbalance/weakness (Yuksel et al., 2011; Madeley, Munteanu, & Bonanno, 2006)
- Previous history of MTSS or stress fracture (Hubbard et al., 2009)
- Increased magnitude of pronation (Moen et al., 2012a; Raissi et al., 2009; Rathleff et al., 2012; Sharma et al., 2011; and Yates & White, 2004; Ostrom unpublished, 2015)
Hypotheses about pronation

- Pronation = abduction, eversion, and dorsiflexion

- Pronation and MTSS are associated but underlying pathophysiology is unclear (no causation yet)

- Muscle traction (Stickley et al., 2009)

- Compressive/torsional forces on tibia (Moen et al., 2009)
 - Abnormal Bone Scans (Magnusson et al., 2001)
Other Biomechanical Risk Factors

- Li (1990) Impact forces related to heel strike velocities and shank/knee angle are related to magnitude and direction of ground reaction forces.

- Lieberman et al. (2010) Ground reaction forces and heel strike versus toe strike.
Muscle Mechanics
Muscle Mechanics

- Motors (overcoming inertia - concentric contractions)
- Brakes (resisting inertia - eccentric contractions)
- Struts (resist compressive force - isometric contractions)
- Springs (store and return elastic energy - burst contractions)
How should we use our lower leg muscles during running?

- Struts and springs are more efficient (Ryschon et al., 1997; Sano et al., 2013)

- Isometric contractions (in lower leg)
 - Metabolically more efficient
 - Muscle tendon unit can store and release elastic energy

- MTSS and pronation
Joint Angle and Force Length Curve

KNEE ANGLE ~145 DEGREES KNEE ANGLE ~160 DEGREES

Gastroc
Soleus
AT
Prevention

- Prevention is key because once they have MTSS it is extremely difficult to treat

- How?
Gait Re-training

- Utilizing over pronation as a measure to identify at risk athletes and begin preventative training before symptoms occur!

(Sharma et al., 2014)
Coaching Cues

- Good posture
- Neutral hip position
- Foot strike- just behind the ball of the foot
Foot Strike

- Correct position loads muscle tendon units linearly allowing MTUs to “catch” the load

- Puts the athlete in a better position to take advantage of elastic recoil

- Reduces unwanted movement
Exercise Protocol

- Progressive loading
- Static to dynamic
- Balance and coordination
- Re-learning simple running drills (reinforce cues)
Specific Exercises

STATIC
- Single leg balancing task
- Balancing on Dynadisc (or Bosu)
- Isometric calf contractions (on step or ledge)
- Weighted isometric calf contractions
- Toe grabs/ lean forward

DYNAMIC
- Toe taps
- Ankle pumps (theraband)
- Jump rope
- Speed ladder
- **Single Leg Squats**
- Core strengthening
Conclusion

- Athletes with MTSS display larger magnitudes of pronation.

- Pronation may reduce their ability to use their muscles as struts and springs.

- Utilizing coaching cues with exercises can reduce an athlete's risk.
References

