100 / 110m HURDLE TRAINING

with respect to the Contemporary Technical Model

RALPH LINDEMAN, Head Track Coach US Air Force Academy

AIR FORCE ACAL_MY

Ralph Mann's research has identified that successful hurdlers <u>must</u>:

- 1) Minimize time from start to take-off to 1st Hurdle
 - Manage Steps
 - Reach proper take-off distance to the 1st hurdle
 - Generate highest horizontal velocity possible to that distance
 - Minimize time from start to take-off to 1st Hurdle

2) Minimize Hurdle Clearance time

- Begin from proper take-off distance to the 1st hurdle
- Minimize ground time into and off of the hurdle
- Minimize air time over the hurdle
- Lose as little horizontal velocity as possible over the hurdle
- 3) Minimize time for the 3 steps between hurdles
 - Manage Steps
 - Reach proper take-off distance to the next hurdle
 - Regain highest amount of horizontal velocity as possible over those 3 steps
- 4) Utilize mechanics to get the most out of the Hurdle Clearance
 - Maximize front-side mechanics
 - Minimize back-side mechanics

From Ralph Mann's conclusions from his video study, he's identified the following "*coaching issues*":

- 1) The importance of the Start is too often ignored.
- 2) Training has been dominated by sprint activity over Hurdle activity.
- 3) The traditional core concepts of Hurdle technique are flawed.
- 4) The mechanics of the steps between the Hurdles has been ignored and any specific training virtually ignored.

IMPLICATIONS for TRAINING

IMPLICATIONS for TRAINING

1) Practice the Start at least 2 times a week

- In preparation for Hurdling, every time you Hurdle
- Individually, with the focus on mechanics (vs. competition)
- As a group, in a competitive environment

2) Teach the most effective (FASTEST!) start for that specific athlete

- 1st 3 steps
- Measure *touchdown* preceding 1st hurdle
- 3) Provide constant feedback to the athlete
 - TEACH: Verbal feedback
 - TEACH: Video feedback
 - TIME: 3m, or, 3rd step *touchdown*; *touchdown* preceding hurdle clearance

7-vs. 8-step Approach Models

7-vs. 8-step Approach Models

Description	Hurdle Clearance Stride	1st Stride from Hurdle	2nd Stride from Hurdle	3rd Stride from Hurdle	Hurdle Clearance Stride
ΔD	3.48m	1.48m	2.14m	2.04m	3.48m

Description	Hurdle Clearance Stride	1st Stride from Hurdle	2nd Stride from Hurdle	3rd Stride from Hurdle	Hurdle Clearance Stride
ΔD	3.48m	1.48m	2.14m	2.04m	3.48m
% of D between		27%	38%	35%	

Description	Hurdle Clearance Stride	1st Stride from Hurdle	2nd Stride from Hurdle	3rd Stride from Hurdle	Hurdle Clearance Stride
ΔD	3.48m	1.48m	2.14m	2.04m	3.48m
% of D between		27%	38%	35%	
Characterization		"Fall" Step	"Shuffle" Step	"Drop" Step	

"The Hurdles are NOT a Sprint" ~Ralph Mann

Stride Lengths in a 110m Hurdle Race (m)

"The Hurdles are NOT a Sprint" ~Ralph Mann

Stride Lengths in a 110m Hurdle Race (m)

"The Hurdles are NOT a Sprint" ~Ralph Mann

Stride Lengths in a 110m Hurdle Race (m)

Ten (10) *Decelerations* ... Eleven (11) *Accelerations*

"The Hurdles are NOT a Sprint" ~Ralph Mann

Stride Lengths in a 100m Sprint Race (m)

Slide from 2010 Presentation

Slide from 2010 Presentation

PRIMARY CONCERNS

- Teach hurdler to *sprint* through the barriers!
- Analyze for the causes of effects.
- Coach for balance-eliminate causes of excessive rotation.
- Stress concentration-on every one of the ten hurdles.

IMPLICATIONS for TRAINING

IMPLICATIONS for TRAINING SOLUTION to the "SPRINT vs HURDLE ISSUE"

- 1) Most "speed work" should be done within the hurdle stride length (or stride pattern ~RL) constraints
 - Stride rate ("speed") training— at race rates
 - Stride length training- at standard distance, but lower heights

3) Provide constant feedback to the athlete

- TEACH: Verbal feedback
- TEACH: Video feedback
- TIME: 3m or 3rd step *touchdown*; *touchdown* preceding hurdle clearance

2) Teach the most effective model for each particular athlete

- Hurdle technique
- Step pattern

IMPLICATIONS for TRAINING Lots & lots of *Rhythmic* Hip Mobility Drills

IMPLICATIONS for TRAINING

Emphasis should be on F-A-S-T Hurdling

IMPLICATIONS for TRAINING

For increased Stride Frequency

between hurdles, try reps over hurdles with reduced spacing:

College Men: HS Boys: College Women: HS Girls: 13m to 1st hurdle, 8.5 - 8.8m between
12.5m to 1st hurdle, 8.3 - 8.5m between
12.5m to 1st hurdle, 8.0 - 8.3m between
12m to 1st hurdle, 7.8 - 8.0m between

IMPLICATIONS for TRAINING

For increased Velocity

between hurdles, try 10 strides to the 1st hurdle and 5 between hurdles:

College Men:	17m to 1st hurdle, 13m between
HS Boys:	16m to 1st hurdle, 12.5m between
College Women:	16m to 1st hurdle, 11.5m between
HS Girls:	15.5m to 1st hurdle, 11m between

IMPLICATIONS for TRAINING

For <u>both</u> increased Stride Frequency <u>and</u> inceased Velocity

Lower the hurdles keeping the hurdles the standard distance apart:

12" Banana Hurdles →
24" Scissor Hurdles →
30", 33", 36", 39" Standard Hurdles

IMPLICATIONS for TRAINING Don't ignore "Bounding"

IMPLICATIONS for TRAINING Don't ignore "Bounding"

1) A-bounds *teach* Hurdle Technique, most importantly, fast lead knee and full extension of drive leg.

2) Bounding is invaluable for building explosive strength needed for optimal stride length in Hurdling.

OTHER VIEWS on TRAINING

QUESTIONS?

100 / 110m HURDLE TRAINING with respect to the Contemporary Technical Model

RALPH LINDEMAN, Head Track Coach US Air Force Academy

e-mail: ralph.lindeman@usafa.edu

AIR FORCE ACAL