Technical Training and Peaking
Battling the 8 Hour Rule
The Politics of Sport

- The NCAA
- USTFCCCA
Principles of Skill Acquisition

- Breaking Skills Down is the Best Way to Teach Them
- When Teaching Technique, Going Slow is Better
- It's Important to Have a Good Repertoire of Drills
- It's Best to Master Things at Slow Speeds Before Introducing High Speeds
- You Can Effectively Teach Technique Anytime
- Perfect Practice Makes Perfect Technique
Common Fallacies - All False!

- Breaking Skills Down is the Best Way to Teach Them
- When Teaching Technique, Going Slow is Better
- It's Important to Have a Good Repertoire of Drills
- It's Best to Master Things at Slow Speeds Before Introducing High Speeds
- You Can Effectively Teach Technique Anytime
- Perfect Practice Makes Perfect Technique
Whole vs. Part

- Motor Learning Research
- Whole Learning Superiority
- When and How to Break it Down
- Chunking Strategies
 - Minimizing the Breakup
 - Strategic Placement of the Ends
Variability in Practice

- Motor Learning Research Finding
- Practice - Perfect?
- The Key Isn’t Mastery – It’s the Struggle to Get There
- Coaching Implications
 - Variety in the Practice Environment
 - The Shotgun Approach to Skill Acquisition
Drills

- Aisle 5
- An Environment to Teach
- The Value of Drills
 - Narrowing Boundaries
 - Repetitions Gained Faster
- Teaching Progressions
Technical Teaching Tools

- Drills
- Technical Exercises
- Teaching Progressions
- Technical Rehearsal
Cues

- Cues and Cue Systems
- Cuing Skill – A Lost Art
- Cuing and Adventureland
- The Tools of Change - Cuing and Pressure
Cycling Cues and Cue Systems

- Cue Systems
 - Productivity
 - Time Frames

- The Peaking Process
 - Periodizing Cue Systems
 - Timing It Right
The Effective Coach Must Be Able to:

- Coach at Slow or Drill Speeds
- Coach at Fast or Meet Speeds
- Know What it Looks Like
- Know What it Feels Like
- Coach Movements, Not Positions
- Have a Repertoire of Cues to Handle All Likely Problems
Technical Periodizations

- A Long Term Plan
- Organized Technical Training Phases
Technical Training Phases

- The Phases and Distributions
 - Radical Changes
 - Drills and Technical Exercises
 - Synthesis
 - Problem Solving
Technical Training Phases - Rationale

- It Takes Time
- Training Interference
- Planned Progression Toward Meet Intensities
<table>
<thead>
<tr>
<th>Date</th>
<th>Long Jump Approach Length</th>
<th>Triple Jump Approach Length</th>
<th>Long Jump Volume</th>
<th>Triple Jump Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, October 04, 2016</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Thursday, October 06, 2016</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Tuesday, October 11, 2016</td>
<td>8</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Thursday, October 13, 2016</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Tuesday, October 18, 2016</td>
<td>8</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Thursday, October 20, 2016</td>
<td>8</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Tuesday, October 25, 2016</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Thursday, October 27, 2016</td>
<td>6</td>
<td>6</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Tuesday, November 01, 2016</td>
<td>8</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Thursday, November 03, 2016</td>
<td>8</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Tuesday, November 08, 2016</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Thursday, November 10, 2016</td>
<td>8</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Tuesday, November 15, 2016</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Thursday, November 17, 2016</td>
<td>10</td>
<td>6</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Tuesday, November 22, 2016</td>
<td>10</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Tuesday, November 29, 2016</td>
<td>12</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Thursday, December 01, 2016</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Tuesday, December 06, 2016</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Thursday, December 08, 2016</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tuesday, December 13, 2016</td>
<td>10</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Thursday, December 15, 2016</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tuesday, January 03, 2017</td>
<td>12</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Thursday, January 05, 2017</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tuesday, January 10, 2017</td>
<td>12</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Thursday, January 12, 2017</td>
<td>12</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Technical Training Phases

- The Phases and Distributions
 - Radical Changes – Very Early
 - Drills and Technical Exercises - Done by the Middle of General Prep
 - Synthesis - Arrive at Meet Intensities Before the First Meet
 - Problem Solving - Early Inseason
Technical Training Phases – Implications

- A Key Tenet – Stay On Schedule
 - The Disjoint Between Meet and Practice Intensities
 - Skill Acquisition During Hard Training Phases
 - Technical Improvements Inseason – And if So, How?
 - Preparation Specific to Time of Year
Motor Interference

- Skills – Same and Different
- Tuning in to Meet Frequencies and Rhythms
- Motor Differentiation
- When Not to Practice
The Purpose of Practice

- Common Purposes of Practice
 - Learning a Skill
 - Rehearsing a Skill
 - Correcting an Error
 - Simulating a Meet
The Forgotten Purpose of Practice - Communication

- Practicing Communication
 - Rehearsing Cuing
 - Rehearsing Responses to Cues
 - Rehearsing Error Correction
- The Need For Speed?????
Technical Training Phases – Implications

- The 8 Hour Rule
 - Limitations and Problems
 - Potential Solutions
 - Safety Exceptions
 - Overlapping Years
The Overload Principle

- The Overload Principle
- Applications to Motor Learning
- The Stimulus and Progression Curves
- Implications for Training
Common Fallacies

- Breaking Skills Down is the Best Way to Teach Them
- When Teaching Technique, Going Slow is Better
- It's Important to Have a Good Repertoire of Drills
- It's Best to Master Things at Slow Speeds Before Introducing High Speeds
- You Can Effectively Teach Technique Anytime
- Perfect Practice Makes Perfect Technique