"Throws Dynamics"

Lessons Gleaned from World Leading Biomechanists and Biomechanics Projects

USTFCCCA Symposium

Dan A. Pfaff World Athletics Center Phoenix, AZ

Dynamics

The branch of mechanics concerned with the motion of bodies under the action of forces.

Warning!!

- Beware of conformational bias
- Utilize deep study of new trends and reports
- Sample diverse practitioners and projects
- Realize some of the classics and old guys weren't that far off
- Beware of marketing and internet gurus
- Be careful with inferences

Motor Learning and Biomechanics

Motor learning is a change, resulting from practice or a novel experience, in the capability for responding. It often involves improving the smoothness and accuracy of movements.

Biomechanics is the movement science field that applies the laws of mechanics and physics to human performance, in order to **gain a greater understanding** of performance in movement events through modeling, simulation and measurement.

They are not one and the same!

Factors Influencing Distance: The 10,000 foot view!

- Release Velocity; cost/benefit factors
- Angle of Release; how is it obtained?
- Height of Release; a synchronized result

Games Theory- a study of strategic decision making.

Strategies

- Leverage variables to gain distance
- Lever and Axes systems
- Timing systems, alarm theory
- Momentum
- Speeds
- Support Phases
- Flight Phases
- Pathways of implement and athlete

Virus Detection Paradigm

- Build spectral patterns that allow for identification of most pressing or worst virus.
- Search for "Trigger Viruses".
- Let go of myopic searches and see things in a more fractal, geometric manner.
- Keep "Cause and Effect" analysis at the forefront.

Tensegrity Factors, an Overlooked Phenomena in Technical Change

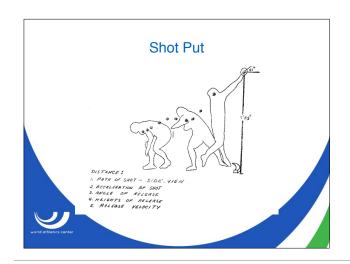
Motion Analysis: What to Watch and Cue

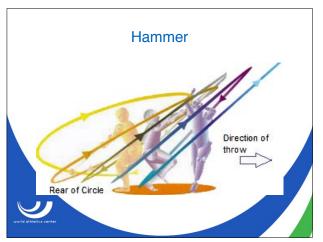
- Inter-athlete study
- -gender, training age, cultures, evolutions
- Intra-athlete study
- -far throws, poor throws, weather issues, evolution
- Event History and Evolutions
- -film, studies, interviews, reports and texts

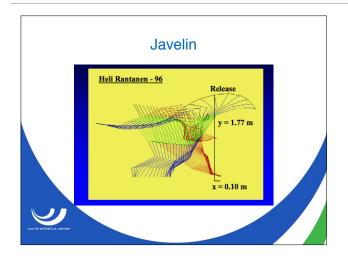
Bandwidth of Styles: Shot Put

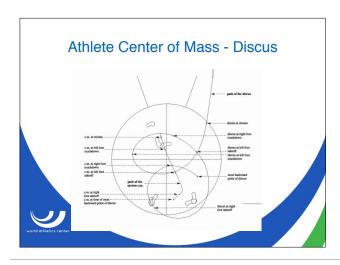
Discus Bandwidth

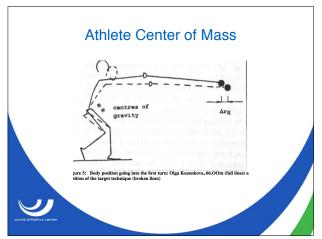


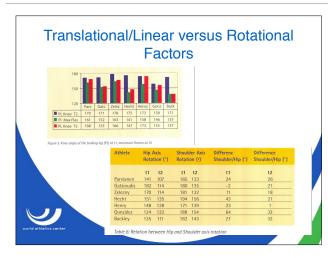


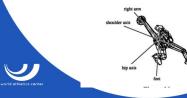

Kinematics and Kinetics of the Throws


• Path of the implement: linear undulations and orbitals


• Discus:

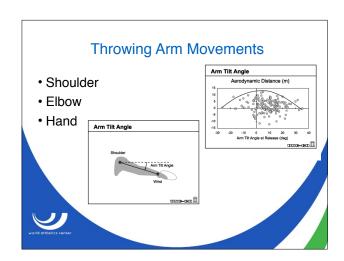


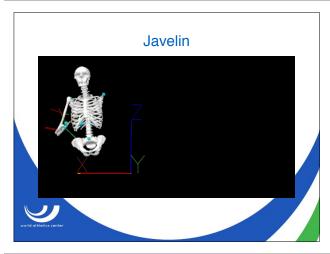




Longitudinal, Shoulder and Hip Axes

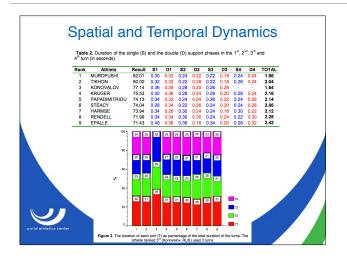
- At various stages and support phases of the throw
- In relation to rotational factors
- 3 dimensional analysis critical


Head Positions


• Deviations in the frontal, saggital and transverse planes

Free Arm Movement Paths and Timing

| Company of the Comp


Hip, Knee and Ankle Factors • Angles, ranges, congruency • Pathways of movement • Timing • Support phase and flight phase factors

Longitudinal Foot Axis

- In double support phases
- In single support phases
- In flight phases

Temporal Dynamics-Discus

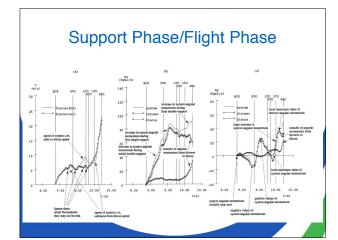
Optimum Temporal Rhythm

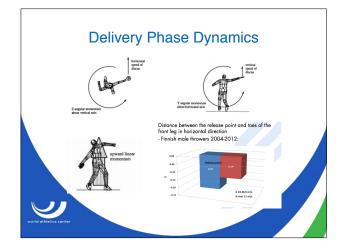
- Unwind ≥ 0.6 sec
- 0.45 sec ≤ Single support on the back ≤
 0.55 sec
- 0.08 sec ≤ Flight ≤ 0.12 sec
- 0.17 sec ≤ Single support in the middle ≤
 0.22 sec
- 0.15 ≤ Delivery ≤ 0.17 sec

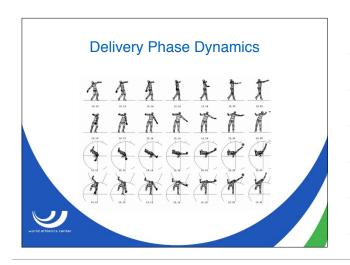
000000-00001

Preparation Phase or Windup

- Balance
- Rhythm and Timing
- Replication of program disc drives
- Elastic strength promotion
- Conservation of momentum
- Conservation of acceleration


Preparation Phase or Windup




Positive Movement Phase

- Free side dynamics
- Throwing side dynamics
- Support leg dynamics
- Flight phase dynamics
- Free leg or swing leg dynamics
- Foot positions and dynamics

